

NMR spectra of sulphur–fluorine compounds: analysis and simulation by novel program systems

Gerhard Hägele

Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany

Keywords: NMR spectroscopy; Sulphur-fluorine compounds; Spectral simulation; Computer programs

¹⁹F NMR spectroscopy allows the unequivocal identification of molecular structures for various series of sulphur–fluorine compounds, e.g. that derived from S_2F_2 , SF_4 and SF_6 . Novel program systems have been written to provide efficient handling of symmetry concepts of chemical and magnetic equivalence involving single spins and composite particles with spins $I=\frac{1}{2}$ and $I>\frac{1}{2}$ in isotropic and anisotropic solutions. The examples shown in Table 1 have been selected from current literature [1].

The research group at Düsseldorf has developed DAISY ¹, a program system for automated analysis and simulation of NMR spectra running with main-frame computers and workstations. A special version exists for the Bruker X.32 system. The simulators DSYMPC and DCYMPC ¹ are available for PC under DOS. The most advanced version, WIN-DAISY ¹, derived in part

from WIN-NMR (Bruker), working with WINDOWS on a PC 486, was used to simulate the examples listed under Nos. 1–14 in Table 1.

Fig. 1 shows the simulated 19 F NMR spectrum of compound 6, SF_4 = CD_2 . The program WIN-DAISY rapidly

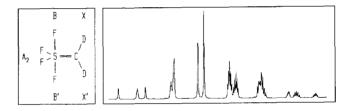


Fig. 1. 56.4 MHz ¹⁹F NMR spectrum of SF₄=CD₂ simulated by WIN-DAISY. Limits of x axis: left: δ_F =64 ppm; right; δ_F (B)=49 ppm relative to CFCl₃ [2].

Table 1 List of compounds, spectra and spin systems

No.	Compound	Spectrum	Spin system	Spins	Groups
1	SF ₃ SCl	¹⁹ F, −100 °C	ABX	3	3
2	SF ₃ SF	¹⁹ F, −100 °C	AMRX	4	4
3	SF_4	¹9F, −100 °C	A_2B_2	4	2
4	$SF_4 = CH_2$	¹⁹ F{¹H}	A_2B_2	4	2
5	$SF_4 = CH_2$	¹⁹ F, ¹Ĥ	$A_2[BX]_2$	6	5
6	$SF_4 = CD_2$	¹⁹ F, ² H	$\mathbf{A_2[B^1X]_2}$	6	5
7	$SF_4 = C(CH_3)CF_3$	¹⁹ F, ¹ H	$A_2BCR_3X_3$	10	5
8	CF ₃ SF ₄ Cl	¹⁹ F{ ¹⁹ F}	AB_2C	4	3
9	SF₅Cl	¹⁹ F	AB_4	5	2
10	SF ₅ OPh	¹⁹ F	AB_4	5	2
11	S_2F_{10}	¹⁹ F	$[AB_4]_2$	10	4
12	$(SF_5)_2O$	¹⁹ F	$[AB_4]_2$	10	4
13	$(SF_5)_3N$	¹⁹ F	$[AB_4]_3$	15	6
14	$Hg(CF_3)_2$	¹⁹ F, ¹⁹⁹ Hg, nema	$[A_3]_2$ and $[A_3]_2X$	6 and 7	2 and 3
15	SF ₄	¹⁹ F, variable temp.	A ₂ B ₂ dynamic	4	4

calculates the $^{1/2}$ A₂[$^{1/2}$ B¹X]₂ spin system involving the deuterons with I=1. Equatorial fluorine atoms have a chemical shift of δ_F (A) = 59 ppm, while axial fluorines resonate at δ_F (B) = 53.6 ppm relative to CFCl₃.

Further PC programs designed in Düsseldorf ¹ have been introduced for teaching NMR theory (MINILA), direct spectral analysis (SPINA-AT), LAOCOON-type iterations (LAOPC), cyclic simulations of NMR series (NMRFILM), double resonance studies (NMDR) and simulations of dynamic NMR spectra (DNMRSIM).

References

- G. Hägele, M. Engelhardt and W. Boenigk, Verlag Chemie, ISBN 3-527-26550-3 (1987); S. Goudetsidis and G. Hägele, Workshop Computer in der Chemie, Software-Entwicklung in der Chemie, 4 (1990) 233; G. Hägele, S. Goudetsidis, H.-W. Höffken, Th. Lenzen, R. Spiske and U. Weber, Phosphorus, Sulfur and Silicon, 77 (1993) 262; U. Weber, R. Spiske, H.-W. Höffken, G. Hägele and H. Thiele, Bruker Manual, 1993.
- [2] Data from B. Potter, G. Kleemann and K. Seppelt, Chem. Ber., 117 (1984) 3225.