NMR spectra of sulphur–fluorine compounds: analysis and simulation by novel program systems ## Gerhard Hägele Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany Keywords: NMR spectroscopy; Sulphur-fluorine compounds; Spectral simulation; Computer programs ¹⁹F NMR spectroscopy allows the unequivocal identification of molecular structures for various series of sulphur–fluorine compounds, e.g. that derived from S_2F_2 , SF_4 and SF_6 . Novel program systems have been written to provide efficient handling of symmetry concepts of chemical and magnetic equivalence involving single spins and composite particles with spins $I=\frac{1}{2}$ and $I>\frac{1}{2}$ in isotropic and anisotropic solutions. The examples shown in Table 1 have been selected from current literature [1]. The research group at Düsseldorf has developed DAISY ¹, a program system for automated analysis and simulation of NMR spectra running with main-frame computers and workstations. A special version exists for the Bruker X.32 system. The simulators DSYMPC and DCYMPC ¹ are available for PC under DOS. The most advanced version, WIN-DAISY ¹, derived in part from WIN-NMR (Bruker), working with WINDOWS on a PC 486, was used to simulate the examples listed under Nos. 1–14 in Table 1. Fig. 1 shows the simulated 19 F NMR spectrum of compound 6, SF_4 = CD_2 . The program WIN-DAISY rapidly Fig. 1. 56.4 MHz ¹⁹F NMR spectrum of SF₄=CD₂ simulated by WIN-DAISY. Limits of x axis: left: δ_F =64 ppm; right; δ_F (B)=49 ppm relative to CFCl₃ [2]. Table 1 List of compounds, spectra and spin systems | No. | Compound | Spectrum | Spin system | Spins | Groups | |-----|------------------------------------|--|---------------------------------------|---------|---------| | 1 | SF ₃ SCl | ¹⁹ F, −100 °C | ABX | 3 | 3 | | 2 | SF ₃ SF | ¹⁹ F, −100 °C | AMRX | 4 | 4 | | 3 | SF_4 | ¹9F, −100 °C | A_2B_2 | 4 | 2 | | 4 | $SF_4 = CH_2$ | ¹⁹ F{¹H} | A_2B_2 | 4 | 2 | | 5 | $SF_4 = CH_2$ | ¹⁹ F, ¹Ĥ | $A_2[BX]_2$ | 6 | 5 | | 6 | $SF_4 = CD_2$ | ¹⁹ F, ² H | $\mathbf{A_2[B^1X]_2}$ | 6 | 5 | | 7 | $SF_4 = C(CH_3)CF_3$ | ¹⁹ F, ¹ H | $A_2BCR_3X_3$ | 10 | 5 | | 8 | CF ₃ SF ₄ Cl | ¹⁹ F{ ¹⁹ F} | AB_2C | 4 | 3 | | 9 | SF₅Cl | ¹⁹ F | AB_4 | 5 | 2 | | 10 | SF ₅ OPh | ¹⁹ F | AB_4 | 5 | 2 | | 11 | S_2F_{10} | ¹⁹ F | $[AB_4]_2$ | 10 | 4 | | 12 | $(SF_5)_2O$ | ¹⁹ F | $[AB_4]_2$ | 10 | 4 | | 13 | $(SF_5)_3N$ | ¹⁹ F | $[AB_4]_3$ | 15 | 6 | | 14 | $Hg(CF_3)_2$ | ¹⁹ F, ¹⁹⁹ Hg, nema | $[A_3]_2$ and $[A_3]_2X$ | 6 and 7 | 2 and 3 | | 15 | SF ₄ | ¹⁹ F, variable temp. | A ₂ B ₂ dynamic | 4 | 4 | calculates the $^{1/2}$ A₂[$^{1/2}$ B¹X]₂ spin system involving the deuterons with I=1. Equatorial fluorine atoms have a chemical shift of δ_F (A) = 59 ppm, while axial fluorines resonate at δ_F (B) = 53.6 ppm relative to CFCl₃. Further PC programs designed in Düsseldorf ¹ have been introduced for teaching NMR theory (MINILA), direct spectral analysis (SPINA-AT), LAOCOON-type iterations (LAOPC), cyclic simulations of NMR series (NMRFILM), double resonance studies (NMDR) and simulations of dynamic NMR spectra (DNMRSIM). ## References - G. Hägele, M. Engelhardt and W. Boenigk, Verlag Chemie, ISBN 3-527-26550-3 (1987); S. Goudetsidis and G. Hägele, Workshop Computer in der Chemie, Software-Entwicklung in der Chemie, 4 (1990) 233; G. Hägele, S. Goudetsidis, H.-W. Höffken, Th. Lenzen, R. Spiske and U. Weber, Phosphorus, Sulfur and Silicon, 77 (1993) 262; U. Weber, R. Spiske, H.-W. Höffken, G. Hägele and H. Thiele, Bruker Manual, 1993. - [2] Data from B. Potter, G. Kleemann and K. Seppelt, Chem. Ber., 117 (1984) 3225.